
Préparation aux Olympiades de Mathématiques
M. Garnier – 2023

Symmetric polynomials

One of our first encounter with symmetric polynomials was through the following problem
(Thursday, September 28, 2023):

Problem 1. Let p(x) = x5 + x and q(x) = x5 + x2. Find all (w, z) ∈ C2 such that w ̸= z and

(1)
{
p(w) = p(z)

q(w) = q(z).

Partial proof. It is fairly easy to find a relation between w and z: because w ̸= z is supposed,
we are really tempted to divide p(w)− p(z) and q(w)− q(z) by w − z:

P (w, z) =
p(w)− p(z)

w − z
=

w5 − z5 + w − z

w − z
=

w5 − z5

w − z
+ 1(2)

Q(w, z) =
q(w)− q(z)

w − z
=

w5 − z5 + w2 − z2

w − z
=

w5 − z5

w − z
+ (w + z).(3)

Thus w + z = 1. Brutal calculations may conclude but there is a smarter and classic way. The
sum of the two "roots" (w and z) is known and there is a special situation where the knowledge
of the sum and the product of roots determines completely a polynomial : the symmetric
polynomials (in two variables, in this case). Hence, knowing the value of wz would allow us to
find all the possible values (w, z) such that is it solution of 1, as desired. □

The aim of this paper is not to give a detailed proof of problem 1 (see IMC 2000). We will
only survey some of the main properties of symmetric polynomials (using Gourdon’s Algebra).

Let A be an unitary commutative ring.

Definition 2. A polynomial P ∈ A[X1, . . . , Xn] is symmetric if :

(4) P (Xσ(1), Xσ(2), . . . , Xσ(n)) = P (X1, X2, . . . , Xn)

for all σ ∈ Sn (σ is a permutation of n elements).

Let’s see some examples. We will use SageMath (a free open-source mathematics software
system) to check properties and play with symmetric polynomials. First, we have to instantiate
the ring on which we’re working on. Let’s say it is R[X, Y, Z]:

R.<X, Y, Z> = PolynomialRing(RR)
One of the simplest example (putting aside the null function) is :

f = X + Y + Z
f.is_symmetric() # True

We can also build more complicated example :
f = X^4 + Y^4 + Z^4 + X^2*Y*Z + X*Y^2*Z + X*Y*Z^2
f.is_symmetric() # True

We can build incredibly complicated example but it’ll only be an illusion because each symmetric
polynomial can be expressed as a combination of elementary symmetric polynomials. Under-
standing this class of symmetric polynomials will be sufficient to deal with general symmetric
polynomials.
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Definition 3. The k-th elementary symmetric polynomial ek ∈ A[X1, . . . , Xn] is :

(5) ek(X1, X2, . . . , Xn) =
∑

1≤i1<i2<...<ik≤n

Xi1Xi2 · · ·Xik .

We will produce the list of the k-th symmetric polynomial for small values of n.
R = PolynomialRing(RR, n, ’X’)
for i in range(n + 1):

f = e([i])
g = f.expand(n, alphabet=[’X_’ + str(i) for i in range(1, n + 1)])
print(g)

We thus obtain a beautiful Christmas tree (or a space invaders ship) !

n ek (with k ∈ [[1, n]])

1
1
X1

2
1

X1 +X2

X1X2

3

1
X1 +X2 +X3

X1X2 +X1X3 +X2X3

X1X2X3

4

1
X1 +X2 +X3 +X4

X1X2 +X1X3 +X2X3 +X1X4 +X2X4 +X3X4

X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4

X1X2X3X4

5

X1 +X2 +X3 +X4 +X5

X1X2 +X1X3 +X2X3 +X1X4 +X2X4 +X3X4 +X1X5 +X2X5 +X3X5 +X4X5

X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4 +X1X2X5 +X1X3X5 +X2X3X5 +X1X4X5 +X2X4X5 +X3X4X5

X1X2X3X4 +X1X2X3X5 +X1X2X4X5 +X1X3X4X5 +X2X3X4X5

X1X2X3X4X5

Our problem is now a symmetrization problem : given a symmetric polynomial expressed in
the usual basis we want to explicit the same polynomial in the basis of elementary symmetric
polynomials. That can be done, for instance, using the "SymmetricReduction[...]" function from
WolframAlpha. An implementation has been made for SageMath by Federico Lebrón (the source
has been slightly modified to be up-to-date) :

def symmetrize(p):
if not p.is_symmetric(): raise Error(str(p) + " is not a symmetric polynomial.")
vars = p.variables()
nvars = len(vars)

S = SymmetricFunctions(RR)
e = S.elementary()
sigmas = [e([i]).expand(nvars, alphabet=vars) for i in range(1, nvars+1)]

R = PolynomialRing(p.base_ring(), [’sigma_%s’ % i for i in range(1, nvars+1)])
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sigma_vars = R.gens()

def sym(f):
if f == 0: return 0
c = f.lc()
degrees = f.lm().degrees()

exps = [degrees[i]-degrees[i+1] for i in range(len(degrees)-1)]
exps.extend(degrees[-1:])

g = prod([sigma_vars[i]**exps[i] for i in range(len(exps))])
gp = prod([sigmas[i]**exps[i] for i in range(len(exps))])

return c*g + sym(f - c*gp)
return sym(p)

We look at the n = 2 case, for convenience we let σ1 = X + Y and σ2 = XY .
For instance, suppose f(X, Y ) = X2 + Y 2 + 6XY − 3X2Y − 3XY 2. Then, the symmetrized
version of f is σ2

1 − 3σ1σ2 + 4σ2. To gain in intuition, at least on R[X, Y ], one may consider
constructing many examples.

P ∈ R[X, Y ] Symmetrized version P ∈ R[X, Y ] Symmetrized version

(X + Y )−X − Y 0 X + Y σ1

(X + Y )2 −X2 − Y 2 2σ2 X2 + Y 2 σ2
1 − 2σ2

(X + Y )3 −X3 − Y 3 3σ1σ2 X3 + Y 3 σ3
1 − 3σ1σ2

(X + Y )4 −X4 − Y 4 4σ2
1σ2 − 2σ2

2 X4 + Y 4 σ4
1 − 4σ2

1σ2 + 2σ2
2

(X + Y )5 −X5 − Y 5 5σ3
1σ2 − 5σ1σ

2
2 X5 + Y 5 σ5

1 − 5σ3
1σ2 + 5σ1σ

2
2

−X − Y + 8X + 8Y 7σ1 X2Y + Y 2X σ1σ2

−X2 − Y 2 + 8X2Y + 8Y 2X −σ2
1 + 8σ1σ2 + 2σ2 X4Y 2 + Y 4X2 σ2

1σ
2
2 − 2σ3

2

−X3 − Y 3 + 8X3Y 2 + 8Y 3X2 −σ3
1 + 8σ1σ

2
2 + 3σ1σ2 X6Y 3 + Y 6X3 σ3

1σ
3
2 − 3σ1σ

4
2

−X4 − Y 4 + 8X4Y 3 + 8Y 4X3 −σ4
1 + 8σ1σ

3
2 + 4σ2

1σ2 − 2σ2
2 X8Y 4 + Y 8X4 σ4

1σ
4
2 − 4σ2

1σ
5
2 + 2σ6

2

−X5 − Y 5 + 8X5Y 4 + 8Y 5X4 −σ5
1 + 8σ1σ

4
2 + 5σ3

1σ2 − 5σ1σ
2
2 X10Y 5 + Y 10X5 σ5

1σ
5
2 − 5σ3

1σ
6
2 + 5σ1σ

7
2

More generally, one can proceed the same way for each symmetric polynomial in n variables.

Theorem 4. Every symmetric polynomial of A[X1, . . . , Xn] is uniquely determined by a poly-
nomial expression of elementary symmetric polynomials.

Proof. See Algebra, class n°33, MIT or Charles Walter’s course. □

Let’s see an usual application of the theorem 4. Set n to 1 and consider the root-expression
of a n-th degree polynomial :

(6) Pn(X) =
n∏

i=1

(X − zi).

https://ocw.mit.edu/courses/res-18-012-algebra-ii-student-notes-spring-2022/mit18_702s22_lect33.pdf
https://math.univ-cotedazur.fr/~walter/L3_Alg_Arith/cours2.pdf
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If we expand it for small values of n, we find :
P1(X) = X − z1(7)

P2(X) = X2 − (z1 + z2)X + z1z2(8)

P3(X) = X3 − (z1 + z2 + z3)X
2 + (z1z2 + z2z3 + z3z1)X − z1z2z3.(9)

We obviously recognize some of the elementary symmetric polynomials ek ! More generally, one
can prove the following result :
(10) P (σ1, σ2, . . . , σn) := Pn(X) = Xn − σ1X

n−1 + σ2X
n−2 − . . .+ (−1)nσn.

We thus have a duality result :

Symmetric polynomial
in terms of roots of P

P (σ1, σ2, . . . , σn)
←→

One-variable polynomial
in terms of coeffs of P

Pn(X)

As an other example of this duality, one can the consider generating function of the elementary
symmetric polynomials:

(11) g(t) :=
∑
k≥0

ek(X1, X2, . . . , Xn)t
k =

n∏
i=1

(1 + tzi).

We then have:
(12) Pn(t) = tng(−1/t).

We can also attach some special symmetric polynomial functions to a given, for instance,
one-variable polynomial. A canonical example is the discriminant. Just think of the well-known
quantity ∆ = b2− 4ac. But ∆(a, b, c) is not a symmetric polynomial of A[a, b, c]. Instead of the
(a, b, c)-triplet we shall consider the roots of z1 and z2 of a two-degree polynomial. Computing
(z1 − z2)

2 gives the desired result b2 − 4ac (up to a division by a, a minor detail without more
significance than a scaling constant). One sees that (z1 − z2)

2 is a symmetric polynomial!

More generally, one defines the discriminant ∆(P ) of P (X) =
n∏

i=1

(X − zi) such that :

(13) ∆(P ) =
∏
i<j

(zi − zj)
2.


