Introduction	Fonctionnement d'une chambre à bulles	Détection de particules	modélisation de trajectoire	Analyse des résultats	Limites et conclusion
000	00000	000000000000		00000000000	

Détection de particules chargées dans un modèle simplifié de chambre à bulles

Decan de Chatouville R. et Garnier M.

Janvier 2023

PARTICLE PHYSICS WITH BUBBLE CHAMBER PHOTOGRAPHS

L. Bettelli*°, M. Bianchi-Streit* and G. Giacomelli*°

Abstract

A few bubble chambers photographs for illustration of high-energy physics *events* at the high school level are here presented after briefly recalling some basic concepts of particle accelerators, bubble chambers and conservation laws in particle physics. Each photograph has a relevance for the understanding of particle physics concepts and of the methods used for analysis.

Sommaire

1 Introduction

- 2 Fonctionnement d'une chambre à bulles
- 3 Détection de particules : modélisation de trajectoire
- 4 Analyse des résultats
- 5 Limites et conclusion

Trois questions vont guider cet exposé :

- A quoi bon détecter des particules? (Introduction.)
- Comment détecter des particules? (En particulier, dans une chambre à bulle.)
- Comment avons-nous fait? (Notre méthode.)

Analyse des résultats Limites et cor 0000000000 0

Mission : recherche de particules !

(source : Wikipédia)

Analyse des résultats Limites et con 0000000000 0

Expectations vs Reality

Figure – Ce que l'on voulait étudier... (une triple désintégration et des collisions dans tous les sens avec simulation numérique) (source : *CERN*)

Figure - Ce que l'on a fait ! (C'est bien aussi !)

Problématique

Figure – Pellicule et photographies de particules en chambre à bulles (source : CERN)

Quelles particules voit-on?

Méthode pour détecter la particule (différente de celle de l'article et dans la continuité du programme du S1)?

ectoire Analyse des résultats Lir

sultats Limites et conclusio

II – Fonctionnement d'une chambre à bulles

Figure – Chambre à bulles aux États-Unis, Illinois (source : *Fermilab*)

Decan de Chatouville R. et Garnier M.

Configuration initiale et cycle de fonctionnement

- chambre à bulles remplie d'hydrogène liquide (ou néon, CF₃I...),
- champ magnétique (≈ 1 Tesla),
- **\blacksquare** particules accélérés ($\approx 1 \text{ GeV}$) envoyés dans la chambre à bulles.

î Fig. 4

Pressure cycle in a bubble chamber exposed to a particle beam at an accelerator. The chamber becomes sensitive after reducing the pressure. About 10 ms after reducing the pressure, the particle beam is sent to the chamber. The flash is activated about 10 ms later and the cycle is terminated about 20 ms later when the bubble chamber pressure is increased.

Figure – Évolution de la pression en fonction du temps dans l'enceinte de la chambre à bulles (source : l'article)

re Analyse des résultats Limites 0000000000 0

Métastabilité des liquides en surébullition

ectoire Analyse des résultats Li

Limites et conclusion

Formation de bulles le long de la trajectoire

Figure - (source : Will cook for friends)

pire Analyse des résultats Limite

Acquisition de données

Figure – Exemple d'appareil photographique Brookhaven National Laboratory, 6 décembre 1965 Deux approches!

Physique classique

Physique (un peu) relativiste

Système (chambre à bulles) : zone de l'espace dans lequel règne un champ magnétique constant et dans laquelle existe des frottements fluides.

Problèmes : caractères métastable, chimique du fluide écartés, aucun effets quantiques ou (vraiment) relativiste, aucune influence de la pression ou température dans le modèle...

On se place dans un référentiel $\mathcal{R}(O; \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ supposé galiléen.

Introduction	Fonctionnement	d'une	chambre	bulle
000	00000			

Mécanique classique

Force de Laplace : $F_m = q \overrightarrow{v} \wedge \overrightarrow{B}$. Forte de frottement fluide : $F_f = -\alpha \vec{v}$. Poids négligé.

Mécanique classique

Force de Laplace : $F_m = q \overrightarrow{v} \wedge \overrightarrow{B}$. Forte de frottement fluide : $F_f = -\alpha \overrightarrow{v}$. Poids négligé.

Principe fondamental de la dynamique :

$$m\begin{pmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{z} \end{pmatrix}_{M/\mathcal{R}} = q\begin{pmatrix} \dot{x}\\ \dot{y}\\ \dot{z} \end{pmatrix}_{M/\mathcal{R}} \wedge \begin{pmatrix} 0\\ 0\\ B \end{pmatrix} - \alpha \begin{pmatrix} \dot{x}\\ \dot{y}\\ \dot{z} \end{pmatrix}_{M/\mathcal{R}}$$
$$m\begin{pmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{z} \end{pmatrix}_{M/\mathcal{R}} = q\begin{pmatrix} \dot{y}B\\ -\dot{x}B\\ 0 \end{pmatrix}_{M/\mathcal{R}} - \alpha \begin{pmatrix} \dot{x}\\ \dot{y}\\ \dot{z} \end{pmatrix}_{M/\mathcal{R}}$$

Alors :

$$\begin{cases} \ddot{x} &= \frac{qB}{m} \dot{y} - \frac{\dot{x}}{\tau} \\ \ddot{y} &= -\frac{qB}{m} \dot{x} - \frac{\dot{y}}{\tau} \end{cases}$$

avec $\tau = \frac{m}{\alpha}$.

Introduction	Fonctionnement d'une chambre à bulles	Détection de particules : modélisation de trajectoire	Analyse des résultats	Limites et conclusion
000	00000	000000000	00000000000	

On utilise, comme habituellement, la **méthode des complexes** pour résoudre (avec la vitesse initiale $\vec{v_0} = v_0 cos(\theta) \vec{e_x} + v_0 sin(\theta) \vec{e_y}$). On trouve :

$$\begin{cases} x(t) &= -e^{-\frac{t}{\tau}} v_0 \omega_c \sin(\theta + \omega_c t) - \frac{1}{\tau} e^{-\frac{t}{\tau}} v_0 \cos(\theta + \omega_c t) \\ y(t) &= e^{-\frac{t}{\tau}} v_0 \omega_c \cos(\theta + \omega_c t) - \frac{1}{\tau} e^{-\frac{t}{\tau}} v_0 \sin(\theta + \omega_c t) \end{cases}$$

avec $\omega_c = \frac{qB}{m}$.

Introduction	Fonctionnement d'une chambre à bulles	Détection de particules : modélisation de trajectoire	Analyse des résultats	Limites et conclusion
000	00000	000000000	00000000000	

Détection de particules : modélisation de trajectoire Analyse des résultats 000000000000

Mécanique (un peu) relativiste

Forme générale du PFD :

$$\frac{\mathrm{d}\,\overrightarrow{p}}{\mathrm{dt}} = \sum_{i} \overrightarrow{F_{i}}$$

avec $\overrightarrow{p} = m \overrightarrow{v}$ (en classique) ou $\overrightarrow{p} = m \overrightarrow{v} \gamma$ (en relativiste).

C

Détection de particules : modélisation de trajectoire Analyse des résultats 000000000000

Mécanique (un peu) relativiste

Forme générale du PFD :

$$\frac{\mathrm{d}\overrightarrow{p}}{\mathrm{dt}} = \sum_{i} \overrightarrow{F_{i}}$$

avec $\overrightarrow{p} = m \overrightarrow{v}$ (en classique) ou $\overrightarrow{p} = m \overrightarrow{v} \gamma$ (en relativiste).

On a :

Relativité restreinte Bases et applications + tornos DUNOD

Ainsi : $[\gamma] = 1$.

ectoire Analyse des résultats

sultats Limites et conclusion

Mécanique (un peu) relativiste

Forme générale du PFD :

$$\frac{\mathrm{d}\,\overrightarrow{p}}{\mathrm{dt}} = \sum_{i} \overrightarrow{F_{i}}$$

avec $\overrightarrow{p} = m \overrightarrow{v}$ (en classique) ou $\overrightarrow{p} = m \overrightarrow{v} \gamma$ (en relativiste).

On a :

The off off off office of the office office

Ainsi : $[\gamma] = 1.$

Calculons :

$$\frac{\mathrm{d}\,\overrightarrow{p}}{\mathrm{dt}} := \frac{\mathrm{d}}{\mathrm{dt}} \Big\{ m\,\overrightarrow{v}\,\gamma \Big\} \tag{1}$$

_

$$\begin{aligned} \frac{\mathrm{d}\overrightarrow{p}}{\mathrm{dt}} &= \frac{\mathrm{d}}{\mathrm{dt}} \left\{ m \overrightarrow{v} \gamma \right\} \\ &= m\gamma \overrightarrow{a} + m \overrightarrow{v} \frac{\mathrm{d}}{\mathrm{dt}} \left\{ \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \right\} \\ &= m\gamma \overrightarrow{a} - \frac{1}{2} m \overrightarrow{v} \left(\frac{-2\dot{v}v}{c^2} \left(1 - \frac{v^2}{c^2} \right)^{-3/2} \right) \\ &= m\gamma \overrightarrow{a} + m \overrightarrow{v} \frac{v\dot{v}}{c^2} \gamma^3 \end{aligned}$$

L'équation est homogène (ouf !).

$$\begin{aligned} \frac{\mathrm{d}\vec{p}}{\mathrm{dt}} &= \frac{\mathrm{d}}{\mathrm{dt}} \Big\{ m \vec{v} \,\gamma \Big\} \\ &= m\gamma \vec{a} + m \vec{v} \frac{\mathrm{d}}{\mathrm{dt}} \Big\{ \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \Big\} \\ &= m\gamma \vec{a} - \frac{1}{2} m \vec{v} \left(\frac{-2iv}{c^2} \left(1 - \frac{v^2}{c^2} \right)^{-3/2} \right) \\ &= m\gamma \vec{a} + m \vec{v} \frac{v \dot{v}}{c^2} \gamma^3 \end{aligned}$$

L'équation est homogène (ouf !).

d

Le PFD nous donne donc :

$$m\gamma \,\overrightarrow{a} + m \,\overrightarrow{v} \frac{v\dot{v}}{c^2} \gamma^3 = q \,\overrightarrow{v} \wedge \overrightarrow{B} - \alpha \,\overrightarrow{v}$$
$$m\gamma \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} + m \frac{\gamma^3}{c^2} \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} \sqrt{\dot{x}^2 + \dot{y}^2} \frac{2\ddot{x}\dot{x} + 2\ddot{y}\dot{y}}{2\sqrt{\dot{x}^2 + \dot{y}^2}} = qB \begin{pmatrix} \dot{y} \\ -\dot{x} \end{pmatrix} - \alpha \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}$$

En conclusion, on a, dans le cas relativiste :

$$\begin{cases} m\gamma \ddot{x} + m\frac{\gamma^3}{c^2}\dot{x}(\ddot{x}\dot{x} + \ddot{y}\dot{y}) &= qB\dot{y} - \alpha\dot{x} \\ m\gamma \ddot{y} + m\frac{\gamma^3}{c^2}\dot{y}(\ddot{x}\dot{x} + \ddot{y}\dot{y}) &= -qB\dot{x} - \alpha\dot{y} \end{cases}$$

Python et ses erreurs...

SystemError : excessive stack use : stack is 3285 deep.

•0000000000

Analyse des résultats Limites et conclusion

IV - Méthode et résultats

Méthode :

Figure - Image brute d'une trajectoire dans une chambre à bulles (source : Département de physique de Toronto)

Analyse des résultats Limites et conclusion

IV - Méthode et résultats

Méthode :

Figure - Trajectoire interpolée

oire Analyse des résultats

Limites et conclusion

IV - Méthode et résultats

Méthode :

Trouver une relation entre la masse, la charge et les équations du mouvement. Injecter les valeurs interpolées (x, y) dans la relation obtenue.

Déterminer la relation :

On reprend les équations du mouvement (un peu) relativiste en ayant fait le changement de variable $X = \dot{x}$ et $Y = \dot{y}$:

$$\begin{split} &m\gamma \dot{X} + m\frac{\gamma^3}{c^2}X(\dot{X}X + \dot{Y}Y) = qBY - \alpha X \\ &m\gamma \dot{Y} + m\frac{\gamma^3}{c^2}Y(\dot{X}X + \dot{Y}Y) = -qBX - \alpha Y \end{split}$$

Déterminer la relation :

On reprend les équations du mouvement (un peu) relativiste en ayant fait le changement de variable $X = \dot{x}$ et $Y = \dot{y}$:

$$\begin{split} m\gamma \dot{X} + m\frac{\gamma^3}{c^2}X(\dot{X}X + \dot{Y}Y) &= qBY - \alpha X \\ m\gamma \dot{Y} + m\frac{\gamma^3}{c^2}Y(\dot{X}X + \dot{Y}Y) &= -qBX - \alpha Y \end{split}$$

On multiplie l'équation du haut par Y et l'équation du bas par X, puis on en prend la différence :

$$m\gamma \left(\dot{X}Y - \dot{Y}X \right) = qB \left(Y^2 + X^2 \right)$$

Déterminer la relation :

On reprend les équations du mouvement (un peu) relativiste en ayant fait le changement de variable $X = \dot{x}$ et $Y = \dot{y}$:

$$\begin{split} &m\gamma \dot{X} + m\frac{\gamma^3}{c^2}X(\dot{X}X + \dot{Y}Y) = qBY - \alpha X \\ &m\gamma \dot{Y} + m\frac{\gamma^3}{c^2}Y(\dot{X}X + \dot{Y}Y) = -qBX - \alpha Y \end{split}$$

On multiplie l'équation du haut par Y et l'équation du bas par X, puis on en prend la différence :

$$m\gamma \left(\dot{X}Y - \dot{Y}X \right) = qB \left(Y^2 + X^2 \right)$$

On divise par Y^2 et l'on reconnaît une identité :

$$m\gamma\Big(\underbrace{\frac{\dot{X}Y - \dot{Y}X}{Y^2}}_{=\left(\frac{X}{Y}\right)'}\Big) = qB\Big(\underbrace{\frac{Y^2 + X^2}{Y^2}}_{=1 + \frac{X^2}{Y^2}}\Big)$$

Introduction	Fonctionnement	d'une	chambre	
000	00000			

Donc :

$$m\gamma \Bigl(\frac{X}{Y}\Bigr)' = qB\Bigl(1+\Bigl(\frac{X}{Y}\Bigr)^2\Bigr)$$

Introduction	Fonctionnement d'une chambre à bulles	Détection de particules : modélisation d
000	00000	0000000000

Donc :

$$m\gamma\left(\frac{X}{Y}\right)' = qB\left(1 + \left(\frac{X}{Y}\right)^2\right)$$

On pose $Z(t)=\frac{X(t)}{Y(t)},$ et l'on obtient :

$$\frac{m}{q} = \frac{B}{\gamma} \Bigl(\frac{1+Z^2}{\dot{Z}} \Bigr)$$

(Raisonnement absolument identique dans le cas classique mais sans le γ .)

Introduction	Fonctionnement	d'une	chambre	bull
000	00000			

Analyse des résultats Limites et conclusion

Analyse des résultats

(e)

(d)

(f)

	classique	relativiste $(0.1c, 0.99c)$	relativiste (modèle)
(a)	-9.792067046685643	$-9.792067046651212,\ -1.381341045227812$	-5.021604589136478
(b)	80.3631584770906	79.9603330909135, 11.33661859128366	4.423352083858184
(c)	2230.186782338283	2219.0078308278285, 314.60656123786777	1784.1494258706275
(d)	-38.276352540036996	-38.08448991560071, -5.399543995469133	-4.186670170354276
(e)	-242.13455453110188	-240.9208398478542,-34.15728232324268	-2.421315278299895
(f)	6810.573755099996	$6776.435325812552, \ 960.7496583323733$	992.1361626538778

Decan de Chatouville R. et Garnier M.

Détection de particules en chambre à bulles

Électron

Table	1.	Mass	in	MeV/c	² for	all	fundam	ental el	ment	ary
partic	cs	(modi	fied	l from	[6]).7	The	particle	variant	with	the
longes	t li	fetime	is p	orinted	in bo	dd.				

Particle	charged	neutral	
LEPTONS			
Electron	0.511 (-)		
Muon	105.66 (-)		
Tau	1776.99 (-)		
MESONS			
Pion	139.57 (+/)	134.98	
Kaon	493.68 (+/-)	497.65	Ks^0 and $K_L{}^0$
Eta		547.75	
Rho		775.8	
Omega		782.59	
D Meson	1869.4 (+/)		
Ds Meson	1968.3 (+/-)		
B Meson	5279.0 (+/-)	5279.4	
Bs Meson		5369.6	
BARYONS	positive	neutral	negative
Nucleon	938.27	939.56	
Lambda		1116.68	
Sigma	1189.37	1192.64	1197.45

Figure - source : Karl Greulich. Calculation of the masses of all fundamental elementary particles with an accuracy of approx. 1. J. Mod. Phys, 1 :300-302, 01 2010.

	classique	relativiste $(0.1c, 0.99c)$	relativiste (modèle)
(a)	-9.792067046685643	$-9.792067046651212,\ -1.381341045227812$	-5.021604589136478

Introduction	Fonctionnement	d'une	chambre	bulle
000	00000			

Analyse des résultats Limites et conclusion

Méson

Table 1.	Mass i	in MeV/	c ² for all	fundam	ental el	ementary
particles	(modif	fied from	[6]).The	particle	variant	with the
longest li	fetime i	is printee	in bold.			

Particle	charged	neutral	
LEPTONS			
Electron	0.511 (-)		
Muon	105.66 (-)		
Tau	1776.99 (-)		
MESONS			
Pion	139.57 (+/)	134.98	
Kaon	493.68 (+/-)	497.65	Ks^0 and $K_L{}^0$
Eta		547.75	
Rho		775.8	
Omega		782.59	
D Meson	1869.4 (+/)		
Ds Meson	1968.3 (+/-)		
B Meson	5279.0 (+/)	5279.4	
Bs Meson		5369.6	
BARYONS	positive	neutral	negative
Nucleon	938.27	939.56	
Lambda		1116.68	
Sigma	1189.37	1192.64	1197.45

Figure - source : Karl Greulich. Calculation of the masses of all fundamental elementary particles with an accuracy of approx. 1. J. Mod. Phys, 1 :300-302, 01 2010.

	classique	relativiste $(0.1c, 0.99c)$	relativiste (modèle)
(c)	2230.186782338283	2219.0078308278285,314.60656123786777	1784.1494258706275

ectoire Analyse des résult 000000000

sultats Limites et conclusion

V – Limites et conclusion

