Deriving the Kohn-Sham equation

This assignement is divided in two parts: i) in the first part you have to derive
the KS equations (see instructions below); ii) in the second part you have to write
the total energy as a function of the KS eigenvalues.

i) Derive the KS equations We have the following minimization problem :
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Let’s replace the functional E[n| by its full expression :
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We expand it (by additivity of the operator) and pass the last term of the left hand
side to the right hand side :
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We compute the i-th part of

Now, the problem is that the ¢ does not explicitly appear in the expression of the
other terms of the left hand side. Let’s multiply ingenuously by a quantity equal to
one each term :
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fraction of the right hand side is equal to Vi (r). We repeat the exact same process
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The right hand side is equal to A;1);(r).

()

In a previous lecture we found that = 1;(r). And, by definition the first
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So, if we conclude, we found the following expression :
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2) Total energy as function of KS eigenvalues

We want to make the formula Z A; appears, i.e. the sum of the eigenvalues. We

i
think about the sum because we want to have the total energy.
A fondamental postulate of quantum mechanics is that, for orthonormalized wave-

functions 1, / dry)f (r)y;(r) = 1. So, a good move would be to multiply by

whole space
the complex conjugate, integrate over the whole space and then sum for all . Let’s

do that for the right hand side first :
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Now, repeat the same process on the left hand side of the Kohn-Sham equations:
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The second part is equal to :
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The third part is equal to :
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And the last part is equal to :
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At last, the following expression was derived :
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We, finally, recall the definition of the total energy :
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Then, substituting Ts[n| from equation (13) to equation (14) :
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