This assignement is divided in two parts: i) in the first part you have to derive the KS equations (see instructions below); ii) in the second part you have to write the total energy as a function of the KS eigenvalues.
i) Derive the KS equations We have the following minimization problem :

$$
\begin{equation*}
\frac{\delta\left[E[n]-\lambda_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})\right]}{\delta \psi_{i}^{*}}=0 \tag{1}
\end{equation*}
$$

Let's replace the functional $E[n]$ by its full expression :

$$
\begin{equation*}
\frac{\delta\left[T_{s}[n]+\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\mathrm{ext}}(\mathbf{r})+\frac{1}{2} \int \mathrm{~d} \mathbf{r} \mathrm{~d} \mathbf{r} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\mathbf{s}}\right)}{\mathbf{| r - \mathbf { r } ^ { \prime } |}}+E_{\mathrm{xc}}[n]-\lambda_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})\right]}{\delta \psi_{i}^{*}}=0 . \tag{2}
\end{equation*}
$$

We expand it (by additivity of the operator) and pass the last term of the left hand side to the right hand side :

$$
\begin{equation*}
\frac{\delta T_{s}[n]}{\delta \psi_{i}^{*}}+\frac{\delta\left[\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\mathrm{ext}}(\mathbf{r})\right]}{\delta \psi_{i}^{*}}+\frac{\delta\left[\frac{1}{2} \int \mathrm{~d} \mathbf{r} \mathrm{~d} \mathbf{r} \cdot \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\bullet}\right)}{\mid \mathbf{r} \mathbf{r})}\right]}{\delta \psi_{i}^{*}}+\frac{\delta E_{\mathrm{xc}}[n]}{\delta \psi_{i}^{*}}=\frac{\delta\left[\lambda_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})\right]}{\delta \psi_{i}^{*}} . \tag{3}
\end{equation*}
$$

We compute the i-th part of $\frac{\delta T_{s}[n]}{\delta \psi_{i}^{*}}$:

$$
\begin{equation*}
\frac{\delta}{\delta \psi_{i}^{*}}\left[\int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \frac{-\nabla^{2}}{2} \psi_{i}(\mathbf{r})\right]=-\frac{\nabla^{2}}{2} \psi_{i}(\mathbf{r}) \tag{4}
\end{equation*}
$$

Now, the problem is that the ψ_{i}^{*} does not explicitly appear in the expression of the other terms of the left hand side. Let's multiply ingenuously by a quantity equal to one each term :

$$
\begin{equation*}
\frac{\delta\left[\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\mathrm{ext}}(\mathbf{r})\right]}{\delta \psi_{i}^{*}}=\frac{\delta\left[\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\mathrm{ext}}(\mathbf{r})\right]}{\delta n(\mathbf{r})} \frac{\delta n(\mathbf{r})}{\delta \psi_{i}^{*}} \tag{5}
\end{equation*}
$$

In a previous lecture we found that $\frac{\delta n(\mathbf{r})}{\delta \psi_{i}^{*}}=\psi_{i}(\mathbf{r})$. And, by definition the first fraction of the right hand side is equal to $V_{\text {ext }}(\mathbf{r})$. We repeat the exact same process to compute $\frac{\delta\left[\frac{1}{2} \int \mathrm{~d} \mathbf{r} \mathrm{~d} \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right]}{\delta \psi_{i}^{*}}$ and find : $\int \mathrm{d} \mathbf{r}, \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \times \psi_{i}(\mathbf{r})$.

The right hand side is equal to $\lambda_{i} \psi_{i}(\mathbf{r})$.

So, if we conclude, we found the following expression :

$$
\begin{equation*}
\left[-\frac{\nabla^{2}}{2}+V_{\mathrm{ext}}(\mathbf{r})+\int \mathrm{d} \mathbf{r}, \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})}\right] \psi_{i}(\mathbf{r})=\lambda_{i} \psi_{i}(\mathbf{r}) \tag{6}
\end{equation*}
$$

2) Total energy as function of KS eigenvalues

We want to make the formula $\sum_{i} \lambda_{i}$ appears, i.e. the sum of the eigenvalues. We think about the sum because we want to have the total energy.

A fondamental postulate of quantum mechanics is that, for orthonormalized wavefunctions $\psi, \int_{\text {whole space }} \mathrm{d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})=1$. So, a good move would be to multiply by the complex conjugate, integrate over the whole space and then sum for all i. Let's do that for the right hand side first :

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \lambda_{i} \psi_{i}(\mathbf{r})=\sum_{i} \lambda_{i} . \tag{7}
\end{equation*}
$$

Now, repeat the same process on the left hand side of the Kohn-Sham equations:

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}+V_{\mathrm{ext}}(\mathbf{r})+\int \mathrm{d} \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})}\right] \psi_{i}(\mathbf{r}) \tag{8}
\end{equation*}
$$

The first part is equal to :

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \frac{-\nabla^{2}}{2} \psi_{i}(\mathbf{r})=T_{s}[n] \tag{9}
\end{equation*}
$$

The second part is equal to :

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) V_{\text {ext }}(\mathbf{r}) \psi_{i}(\mathbf{r})=\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\text {ext }, \text { total }}(\mathbf{r}) \tag{10}
\end{equation*}
$$

The third part is equal to :

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \int \mathrm{d} \mathbf{r}, \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{i}(\mathbf{r})=\int \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}, \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|r-r^{\prime}\right|} \tag{11}
\end{equation*}
$$

And the last part is equal to :

$$
\begin{equation*}
\sum_{i} \int \mathrm{~d} \mathbf{r} \psi_{i}^{*}(\mathbf{r}) \frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})} \psi_{i}(\mathbf{r})=\int \mathrm{d} \mathbf{r} n(\mathbf{r}) \frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})} \tag{12}
\end{equation*}
$$

At last, the following expression was derived :

$$
\begin{equation*}
\sum_{i} \lambda_{i}=T_{s}[n]+\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\text {ext, total }}(\mathbf{r})+\int \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}, \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|r-r^{\prime}\right|}+\int \mathrm{d} \mathbf{r} n(\mathbf{r}) \frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})} \tag{13}
\end{equation*}
$$

We, finally, recall the definition of the total energy :

$$
\begin{equation*}
E[n]=T_{s}[n]+\int \mathrm{d} \mathbf{r} n(\mathbf{r}) V_{\mathrm{ext}, \text { total }}(\mathbf{r})+\frac{1}{2} \int \mathrm{~d} \mathbf{r} \mathrm{~d} \mathbf{r}, \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|r-r^{\prime}\right|}+E_{\mathrm{xc}}[n] \tag{14}
\end{equation*}
$$

Then, substituting $T_{s}[n]$ from equation (13) to equation (14) :

$$
\begin{equation*}
E[n]=\sum_{i} \lambda_{i}-\frac{1}{2} \int \mathrm{~d} \mathbf{r} \mathrm{~d} \mathbf{r}, \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|r-r^{\prime}\right|}+E_{\mathrm{xc}}[n]-\int \mathrm{d} \mathbf{r} n(\mathbf{r}) \frac{\delta E_{\mathrm{xc}}[n]}{\delta n(\mathbf{r})} \tag{15}
\end{equation*}
$$

